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GENERAL DISCUSSION

,In the following discussion we will summarize the

work performed by Science Applications, Inc. (SAI) on

"Energy Release and Fluid Dynamics in Multiphase Systems"

(additional effort under. Contract #N00014-82-C-2037, SAI

Project #1-157-18-519-00)'during the technical performance

period ending February 1984. During this contract period,

our attention was focussed primarily on: (1) studying the

structure and propagation of multidimensional detonations,

and (2) shock initiation of detonations with an emphasis

on power-energy relations. The efforts and accomplish-

ments in each of these areas is described below in some

detail.

Struc an d PrQagatign f Multidimensional Detonations

The propagation of self-sustained detonations is a

complex, multidimensional process involving interactions

between incident shocks, Mach stems, transverse waves and

bo.undaries of the regions through which the detonation is

movingl, 2 ,3 . Experiments have shown that a propagating

detonation leaves a very regular, cell-like pattern on the

sidewalls of the confining chamber1 ,4 ,5 . These patterns

are etched by the triple-point formed at the front of the

detonation by the intersection of the transverse wave with

the incident shock and the Mach stem. Thus, the cell

patterns are histories of the location of the triple

point. The size and regularity of this cell structure is
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characteristic of the particular combination of initial

material conditions, such as composition, density and

pressure and the geometry of the confining chamber1' 6' 7 .

An understanding of the cell structure is vital for

quantifying the detonability of gaseous mixtures.

We have performed a computational study of self-

sustained detonations with emphasis on finding a

systematic computational method to estimate the natural

cell size for a particular material. In addition, by

examining the behavior of the transverse wave structure,

we have been able to develop insight into the mechanism of

propagation of self-sustained detonations.

We have concentrated on planar mode detonations,

which are two-dimensional and unsteady in the neighborhood

of their detonation fronts. The numerical model used to

perform the simulations solves the time-dependent

conservation equations for mass, momentum and energy 8 in

two dimensions using one variant of the Flux-Corrected

Transport (FCT) algorithm 9 . In addition to the solution

of the convection terms by FCT we have included an

induction parameter model which is a phenomenology

developed to reproduce the correct ignition delays and

subsequent energy release due to chemical reactions1 0 .

Recent schlieren photographs of detonations in low

pressure hydrogen-oxygen-argon mixtures and numerical

simulations of propagating detonations showed the presence
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of unreacted pockets of gas behind the shock front-Mach

stem structure1 I . These pockets are surrounded by

completely burned gas, and they in turn burn more slowly

due to their low temperatures. So we first used the

numerical simulations to study the idealized problem of a

slowly burning pocket of material behind a two-dimensional

planar detonation (one without any initial transverse

structure). This study showed that the burning of a large

enough pocket provides a sufficient perturbation to the

planar detonation to cause it to form a multidimensional

structure. This is an equilibrium configuration since it

repeats exactly at equally spaced intervals as the

detonation propagates down the channel. It is also an

unique structure since changing the size and orientation

of the initial perturbation does not affect the final

state. We then developed a computational method of

determining the cell size from such simulations. The

method involves simulating systems with channel widths

both larger and smaller than the transverse cell spacing.

This approach, tested on a mixture of hydrogen, oxygen and

argon, provides us with an estimate of the cell size which

is in excellent agreement with experimental data. This

accomplishment is very significant since direct experimen-

tal measurement of detonation cell size is often not

practical or feasible and is always very difficult and

expensive.
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The numerical simulations have not only provided us

with a method of determining the cell size from first

principles but have also provided insight into some

aspects of the mechanism by which a self-sustained

detonation propagates. The evolution of the curvature of

the transverse wave appears to be a crucial feature.

First we observed in the simulations that the final result

of a transverse wave collision is a reversal of the

curvature of the transverse wave. This implies that the

natural cell size might be defined as that distance

between two triple points which occurs when the curvature

of two oppositely moving transverse waves goes nearly to

zero. This is substantiated by the evidence obtained in

the simulations that if the tails of the transverse waves

collide first, flattening of the cell occurs. Further, if

the heads of the transverse waves collide first, an

unburned pocket can form. Thus, the simulations have also

allowed us to put into perspective the previous

calculations on the formation of unburned gas pockets

behind detonation fronts11 .

A portion of this work was presented at the 36th

Meeting of the American Physical Society, Division of

Fluid Dynamics (November 1983) with the title "Numerical

Simulations of the Effects of Unburned Gas Pockets behind

Propagating Detonations". Portions of the work will be

presented at the Twentieth International Symposium on
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Combustion (August 1984), an abstract of which is included

in this report as Appendix A entitled "Determination of

Detonation Cell Size Using Multi-dimensional Numerical

Simulations". A more complete version of this study has

been submitted to the journal, Combustion and Flame, and

is included has as Appendix B entitled, "Numerical

Simulations of the Structure and Propagation of Self-

Sustained Detonations".

Shock Initiation of Detonations

A simple theoretical model was developed to determine

the relation between the power and energy required for the

shock initiation of gaseous detonations. Some details of

the model and its initial application to the study of

detonations in oxy-acetylene mixtures have already been

presented in a previous report 1 2 . During this contract

year, further work on refining the model and applying it

to study the shock initiation of detonations in a

hydrogen-air mixture was carried out.

It was reported earlier that the model successfully

explained the qualitative differences in the power-energy

relations obtained from two different experimental

arrangements1 2 ,13 . The model also gave qualitatively good

predictions of the power-energy relation for the

initiation of cylindrical detonations in an acetylene-

oxygen-nitrogen mixture 13 . However, the minimum power and

the minimum energy predicted by the model were quantita-
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tively different from those obtained experimentally. One

reason for the difference is the uncertainity in the

appropriate time to be used for the critical time for

which energy must be deposited in order to initiate a

detonation1 4 . During this contract year, we have

addressed this issue in some detail by comparing the

results from the theoretical model to those obtained from

detailed numerical simulations on the initiation of planar

detonations in a hydrogen-air mixture.

The one-dimensional reactive shock model 1 5 used to

perform the detailed simulations solves the time-dependent

conservation equations for mass, momentum and

energy coupled to the equations describing the chemical

kinetics. The model uses an explicit, Eulerian finite

difference formulation with a sliding rezone capability to

provide resolution around moving gradients. The solutions

of the equations describing the fluid dynamics and the

chemistry of the problem are coupled using time-step

splitting techniques 8 .

We first used the theoretical model to determine the

power-energy relations for the initiation of planar

detonations in a hydrogen-air mixture. The time duration

necessary for the successful initiation was assumed to be

equal to the chemical induction time of the mixture. The

induction time used was obtained by integrating the same

chemical kinetics rate equations used in the detailed



simulations. We then set up the numerical model to

simulate the same problem solved by the theoretical model.

The results from the detailed simulations agreed with

the predictions of the theoretical model when the Mach

number of the shock wave was high. Hov 'er for low Mach

numbers, the detailed simulations shoi initiation with

lower energies than those predicted the theoretical

model. A closer look at the result. nowed that the

pressures and temperatures in the shocked material were in

the weak-ignition regime and therefore very sensitive to

perturbations1 6 .

In order to evaluate quantitatively how a specific

type of perturbation affects ignition, we then simulated

the effects of sound waves in a hydrogen-air mixture by

reconfiguring the numerical model described above. This

gave us a quantitative relation between the induction time

and the sound waves of various amplitudes and frequencies.

The effect of such sound wave perturbations on the power-

energy relation has also been determined.

In addition to the above, further studies on the

initiation of detonations in an acetylene-oxygen-nitrogen

mixture was also carried out. Here the primary focus was

on evaluating the importance of using a variable -', the

ratio of specific heats. For this purpose the power-

energy relations were deterrrined using various

constant ''s and also using a variable y. This study
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showed that using constant 's not only changes the values

of the minimum power and minimum energy but also the Mach

number corresponding to these minimum values.

A portion of the work described above was presented

at the Ninth International Colloquim on the Dynamics of

Explosions and Reactive Systems (July 1983) and has been

accepted for publication in a forthcoming volume of the

series, "Progress in Astronautics and Aeronautics". This

part of the work is included in this report as Appendix C

entitled, "Power-Energy Relations for the Direct

Initiation of Gaseous Detonations". Portions of the work

have also been presented at the 1983 Fall Meeting of The

Combustion Institute (November 1983), a short version of

which is included here as Appendix D with the title,

"Shock Initiation of Detonations in Hydrogen-Air

Mixtures". A more detailed account of part of the work

described above has also been published as NRL Memorandum

Report #5179, "The Relation Between Power and Energy in

the Shock Initiation of Detonations - I". This memo

report is included here as Appendix E. Part II of this

memo report is currently in preparation.
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DETERMINATION OF DETONATION CELL SIZE USING MULTI-DIMENSIONAL
NUMERICAL SIMULATIONS

K.Kailasanath , E.S. Oran, J.P. Boris and T.R. Young

Laboratory for Computational Physics
Naval Research Laboratory

Washington, D.C. 20375

The propagation of self-sustained gaseous detonations is a complex,
multidimensional process involving interactions between incident shocks,
Mach stems, transverse waves and boundaries of the regions through which
the detonation is moving. Experiments have shown that a propagating
detonation leaves a very regular, cell-like pattern on the sidewalls
of the confining chamber. These patterns are etched by the triple-point
formed at the front of the detonation by the intersection of the
transverse wave with the incident shook and the Mach stem. Thus the cell
patterns are histories of the location of the triple point. The size and
regularity of this cell structure is characteristic of the particular
combination of initial material conditions, such as composition, density
and pressure and the geometry of the confining chamber. An understanding
of the cell structure is vital for quantifying the detonability of gaseous
mixtures. Direct experimental measurement of detonation cell size is often
not practical or feasible and is always very difficult . Therefore we have
developed a computational method of determining the natural cell size of a
self-sustained detonation.

We have concentrated on planar mode detonations, which are two-
dimensional and unsteady in the neighborhood of their detonation fronts.
We have used the numerical simulations to develope a computational method
of determining the natural cell size of a self-sustained detonation. The
systematic approach involves simulating systems with tube heights both
larger and smaller than the transverse cell spacing. This approach, tested
on a mixture of hydrogen, oxygen and argon, provides us with an estimate of
the cell size which is in excellent agreement with experimental data.

The numerical simulations have not only provided us with a method of
determining the cell size from first principles but have also provided
insight into some aspects of the mechanism by which a self-sustained
detonation propagates. The evolution of the curvature of the transverse
wave appears to be a crucial feature. Depending on the curvature of the
transverse wave at the time of its reflection from either a neighboring
transverse wave or a wall, the cell is either flattened or pockets of
unreacted gas can be formed.

We will describe some numerical simulations and graphically show
details of the detonation structure. Comparisons to experimental data will
also be presented which show that these numerical simulations have been
able to predict the detonation cell sizes accurately.

* Science Applications, Inc., Mclean, VA.
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ABSTRACT

Two-dimensional time-dependent numerical simulations have been performed

to determine a computational method of determining the natural cell size of a

self-sustained detonation. The systematic approach developed involves

simulating systems with tube heights both larger and smaller than the

transverse cell spacing. This approach, tested on a mixture of hydrogen,

oxygen and argon, provided us with an estimate of the cell size.

The simulations also provided insight into some aspects of the mechanism

by which a self-sustained detonation propagates. The evolution of the

curvature of the transverse wave appears to be the crucial feature. Depending

on the curvature of the transverse wave at the time of its reflection from

either a neighboring transverse wave or a wall, the cell is either flattened

or pockets of unreacted gas can be formed.
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I. INTRODUCTION

The propagation of self-sustained gaseous detonations is a complex, multi-

dimensional process involving interactions between incident shocks, Mach stems,

transverse waves and boundaries of the regions through which the detonation is

1,2,3moving 2 . The triple points formed at the intersection of the transverse

wave with the Mach stem and the incident shock trace out the patterns we call

detonation cells1' 4, . Extensive experimental data6'7'8 has shown that the

size and regularity of this cell structure i characteristic of the particular

combination of initial material conditions, such as composition, density and

pressure1 9°10 . Theoretical efforts 6 ' 1 1 °1 2 ' 1 6 to explain the cell size vary in

2accuracy and in some cases predict sizes within a factor of two . Numerical

simulations have shown that these cells can be formed by perturbing a planar

one-dimensional detonation, but they also show some dependence on initial

conditions 1 3 . Here we present a computational study of self-sustained deton-

ations with emphasis on finding a systematic computational method to estimate

the natural cell size for a particular material. In addition, by examinin the

behavior of the transverse wave structure, we have been able to develop insight

into the mechanism of propagation of self-sustained detonations.

We have concentrated on planar mode detonations, which are two-dimensional

and unsteady in the neighborhood of their detonation fronts. They are obtained

experimentally in tubes of narrow, rectangular cross section when the preferred

transverse wave spacing of the detonation is at least five times the width of

the tube1 6 . This study extends the ideas and methods described at the 19th

Combustion Symposium 14 in which a time-dependent two-dimensional numerical model
1 5

was used to study the formation of unreacted gas pockets within the detonation

cell of a marginal detonation. In the simulations discussed in this paper, we

perturb a planar propagating detonation, i.e., one without any initial transverse

structure, with a large pocket of unburned material behind the detonation front.
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First we show that the burning of a large enough pocket provides a sufficient

perturbation to the planar detonation to cause it to form a multi-dimensional

structure. This is an equilibrium configuration1 6 since it repeats exactly at

equally spaced intervals as the detonation propagates down the channel. It is

also an unique structure since changing the size and orientation of the initial

perturbation does not affect the final state. We then describe a procedure for

determining the detonation cell size from such numerical simulations based on

systematically increasing the tube height in the computation. In this way a

relatively limited set of calculations can give an estimate of the cell size

from a first principles calculation. This approach has provided us not only

with an estimate of the detonation cell size, but also with a picture of the

role played by the transverse wave in a self-sustained detonation. Finally,

the set of calculations described below has allowed us to put into perspective

the previous calculations of the formation of unburned gas pockets behind detonation

fronts.

II THE NUMERICAL MODEL

The numerical model used to perform the simulations described in this paper

solves the time-dependent conservation equations for mass, momentum and energy17

in two dimensions using one variant of the Flux-Corrected Transport (PCT) algorithmi s

This model with various initial and boundary conditions has been used to study

19single and double Mach reflections , mixing and vortex formation at material
20

interfaces and the formation of unreacted gas pockets behind propagating deton-

ations 1 4 . 1 9 . Thus its ability to calculate complicated shook structures has been

tested extensively against theory, experiment and independent computations.

In addition to the solution of the convection terms by FCT, we have included

an induction parameter model which is a phenomenology developed to reproduce the

correct ignition delays and subsequent energy release due to chemical reactions

In this model three quantities must be specified: the time before any energy is
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released (the chemical induction time), the time it takes to release the energy,

and the total amount of energy released. An induction parameter1 5 ,2 1 is then

defined which is a measure of how long the material has remained at a given temp-

erature and pressure. In the calculations this quantity is convected with the

fluid and is used to indicate when the available chemical energy should be released.

For the supersonic reacting flows we are studying here, diffusive effects such

as thermal conduction, viscosity and molecular diffusion are small. Thus we need

to consider only the strong interaction between gas dynamics and chemistry. The

convection and energy release algorithms are coupled by previously described

17
methods

In order to economically resolve the details of the flowfield behind the

moving reactive shock front, an adaptive gridding method is used. A region of

fine zones in the x-direction surrounds and moves with the shock front1 5 '1 7 .

The remaining cells in the x-direction are evenly spaced, except that a smooth

transition from fine to coarse zones is enforced. The cells in the y-direction

are evenly spaced and have the same size as the fine zones in the x-direction.

In the calculations described below, a 150 x 50 mesh was used which meant fine

zones in the range 0.1 - 0.18 cm and coarse zones in the range 1.0 - 1.8 cm for

the different systems simulated. Computational timesteps were in the range 0.1

- 0.18 microseconds. The calculations generally required 2000-3000 timesteps to

reach an equilibrium detonation configuration. One calculation typically requires

90 minutes of CPU time on the Texas Instruments ASC computer.

III. RESULTS AND DISCUSSION

All the simulations described below were initialized by placing an elliptical

pocket of unburnt gas behind a planar detonation propagating into a 65 torr

(8.66 kPa), 298 K stoichiometric hydrogen-oxygen mixture diluted with 60% argon.

Thus in these simulations the pockets are used as a device for initiating the

perturbation. Tubes of 5, 7 and 9 cm height were simulated.
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Determination of Detonation Cell Size

The first calculation simulated a tube 5 cm high, which we estimated from

the experimental data to be close to the natural detonation cell size of the

7
mixture . An unburnt gas pocket, placed symmetrically behind the planar

detonation, generates pressure waves as it burns. These waves interact with

the incident shock front causing the front to curve outwards and after a short

time a portion of the incident shock reflects from the side walls of the tube.

The transverse waves formed are strengthed due to collisions with each other

and the walls, eventually forming the pair of well defined triple points seen
w

4V
in Fig. 1. This figure is a composite of seven @snapshots& of the density

contours at intervals of 10 microseconds. In the first frame the transverse

waves are moving away from each other and towards the wall, by the fourth frame

they have reflected from the walls and are moving towards the center of the tube,

and by frame 7 they are again moving towards the wall after colliding with each

other. Small deviations in the contours in Fig. 1 at the symmetrical locations

above and below the centerline are a result of small asymmetries in the calculation.

Figure 1 shows that the triple point structure does not immediately bounce

off when it hits the wall, indicating that a complete detonation cell has not been

formed. The pattern of the triple points for this calculation is clearer in

Fig. 2A, which shows a time and space gap at the walls as the structure reforms.

Increasing the height of the tube to 7 am, as shown in Fig. 2B, results in a

considerably reduced gap in the path of the triple points propagating from the

walls. Finally, the locus of the triple points for a 9 cm tube, shown in Fig. 2C.

forms a complete detonation cell and what appears to be partial structures above

and below it. From the figure we estimate the cell height and length to be about

8.5 cm and 19.6 cm, respectively.

The surprising feature of the calculations shown in Figs. 2 is the flattened

shape of the cell when the tube height is less than the cell height (e.g., Fig. 2A).
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Below we provide an explanation of this behavior based on observations of the

temperature, pressure and density contours around the transverse wave structure.

We also provide evidence that the varying cell shapes shown in Figs. 2A are a

result of the shape and curvaturve of the transverse wave as it collides with the

wall.

Propagation of Self-Sustained Detonations

Figure 3 shows temperature contours from the 5 cm tube simulation at six

different times at intervals of 10 microseconds. At cycle 2400 the transverse

waves have already collided with each other and are moving towards the wall at

an angle indicated by the arrows. It is useful to focus on the shaded region

between the 1300 K and 2100 K contours since as it evolves it reflects the

changing size of the induction zone. First we note the well-known fact that

behind the transverse wave this region is very narrow and the 2100 K contour is

close to the Mach stem. This is because the higher temperatures and pressures

caused by the passage of the transverse wave decrease the size of the induction

zone. Ahead of the transverse wave the region is much more extended behind the

incident shock. Energy release behind a transverse wave generates pressure waves

which drive it towards the wall. Thus the transverse waves are driven into the

shocked but as yet unburned gas mixture ahead of it. This energy release also

drives the Mach stem outward causing the characteristic bulge seen in the figures.

This expansion causes a decrease in the velocity of the Mach stem and by cycle

2500 the reaction zone has begun to decouple from the Mach stem behind the trans-

verse wave. By cycle 2600, the reaction zone is even more separated from the shock

front. In the absence of walls, this separation would continue to grow until

either the reaction zone and shock front became so decoupled that the detonation

dies, or until ignition occurrs spontaneously due to heating for a long enough

time in the induction region. This latter effect appea& to occur in the 9 cm

simulation described above in which triple points appear pontaneously in the
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induction zones Just before reflection of the transverse waves from the walls.

However, the detonation cell in this 5 cm case is re-initiated by the collision

between the transverse waves and the walls. The collision reverses the direction

of motion of the transverse waves and so the transverse waves again encounter

shocked but unburned mixtures ahead of them. The transverse waves move towards

each other and by cycle 2900 they have collided in the center of the tuble. Again

we observe a large induction zone beginning to form before the collision so that

when the transverse waves reverse direction they again encounter unburned material

to propagate into.

2This picture corroborates the rough criterion given by Fickett and Davis

who maintained that in a detonation cell. a large enough induction zone must form

between two transverse waves receeding from each other. Then when the waves

collide and their directions are reversed, they encounter enough unreacted mater-

ial to sustain their propagation through to the next collision. Although this

concept is supported by the calculations shown above, it does not give us a

criterion for determining a cell size: we saw above that the 5 cm case is smaller

than a detonation cell size, and yet we obtain a self-propagating repeatable

structure.

To better understand the factors that determine the size of a cell, we must

examine the curvature of the transverse wave as it reflects from the wall or

another transverse wave. Consider the pressure contours for the 5 cm case shown

in Fig. 4., in which the location of the transverse wave, incident shock and

Mach stems are marked. For purposes of this explanation we call the 'head' of

the transverse wave that portion at and close to the triple point, and we call

the 'tail' that region of the transverse wave extending back towards the burned

material. At cycle 3200 the transverse waves are moving towards each other, and

we observe that the distance between the two heads is larger than the distance

between the two tails. The pressure contours around the transverse wave outline
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its curvature. The same curvature is evident at cycle 1300, from which we conclude

that the tails of the transverse waves are going to collide with each other earlier

than the heads. Cycle 3600 is a time after the collision of the transverse waves

at the center of the tube and the cell has been reinitiated. Comparing the figures

here, we conclude that the curvature of the transverse wave is reversed at or

around the time of collision. Also at cycle 3600, the heads of the transverse

wave are closer to each other than the tails. Therefore the tails of the trans-

verse wave collide with and reflect from the walls earlier than the beads. From

this we see that such reflection causes a higher pressure difference across the

tail segment of the transverse wave as compared to that across the unreflected

front segment. This high pressure region pushes the incident shock front forward

and results in the flattened detonation cell we saw in Figs; 1 and 2A.

The above observations are for the 5 cm tube for which the natural detonation

cell height is larger than 5 cm. Now consider the 7 cm case. Here the transverse

wave can travel further, become weaker before collisions, and the inclination of

the transverse waves to the tube walls is less. This is evident upon inspection

of figures similar to Fig. 4 for the 7 cm case. If the height of the tube is

exactly equal to the cell height, we expect the transverse wave to be parallel

to the wall at the time of reflection and then every segment of it reflects from

the wall at about the same time. The locus of the triple points in the 7 cm

tube shown in Fig. 2B corroborates this argument since the gap in the path of

the triple points almost disappears with the increase in the tube height.

Furthermore, from the discussion above of the mechanism sustaining detonation

propagation, we see that if the tube height is significantly larger than the

detonation cell height, we expect generation of new triple points due to local

instabilities occurring in the shocked material ahead of the transverse waves.

This produces a new pair of transverse waves propagating towards the two trans-

verse waves already present in the system. The new and old waves then collide
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with each other when the transverse wave spacing equals the detonation cell

height. Therefore in a tube slightly larger than the detonation cell height we

would observe four transverse waves at certain periods in the detonation cell

cycle as well as a complete detonation cell within the tube. This is what is

seen in Fig. 2C for the 9 cm simulation.

Formation of Unburned Gas Pockets

In the 9 cm tube case shown in Fig. 2C we also observed the presence of

14,*19unburned gas pockets near the walls behind the detonation front . The

origin of these pockets in the calculation can be explained by extending the

argument put forth above on the inclination of the transverse wave. Consider

a case for which the tube height is slightly larger than the detonation cell

height. In this case, a transverse wave moving towards the walls, which does

not encounter another transverse wave moving in the opposite direction, continues

to propagate though considerably weakened. However, here the head of the trans-

14verse wave reflects earlier than the rear segment. As previously discussed

this results in a portion of the gas near the head of the transverse wave burning

first and effectively cutting off a gas pocket. For an unburned gas pocket to

form in this way, ignition near the walls must be delayed by some effect. Thus

an unburned pocket is more likely to occur in marginally detonable mixtures such

as the one considered here or at the walls in real systems where there are heat

losses.

Simulations with Asymmetric Initiation

A number of simulations were performed in which the initiating perturbing

pocket was placed asymmetrically so that its axis was at an angle to the planar

detonation front. In these cases unsymmetrical triple points evolved and disappeared,

quickly creating a very irregular cell structures. However, the system eventually

evolved into the symmetrical cases and produced the cell structure shown in Figs. 2.
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In another case we tried to take advantage of the symmetry about the center-
14

line apparent in Figs. 2. In an earlier paper we speculated that simulating a

detonation in a tube which is half the cell height would force a half cell structure

and be equivalent to half of a simulation of a full cell. To test this, we compared

two calculations: a 10 cm tube in which a symmetrical pocket was used (similar

to those in Fig. 2), and a 5 cm tube in which the upper half of a symmetrical

pocket was placed on the lower wall. The 10 cm calculation indeed verified the

observations in the 9 cm case: a cell of about 8.5 cm was formed in the center

of the system and there was not room enough for another full cell to appear in

the calculation. The 5 cm case initially looked like the upper half of the 10 cm

case, but as time went on it became irregular and eventually evolved into the

regular structure shown in the 5 cm calculation in Fig. 2A. These results confirm

that the equilibrium structures obtained in the numerical simulations are indepen-

dent of the initial pertubations. From this we conclude that simulating half-cells

can be misleading. Here we found in the 5 cm asymmetric simulation (which was

the upper half of the 10 em case) that two structures are vying with each other

for dominance: one such as in Fig. 2k and another which is half of the 10 cm

calculation. The dominant mode of propagation eventually wipes out the subdom-

inant mode. These results are consistent with the ideas described above concerning

the structure of the transverse wave at the time of reflection.

IV. SUMMARY AND CONCLUSIONS

The simulations described above present a systematic approach for numerically

determining detonation cell sizes. The basic ingredients in such simulations are

a model for the chemical kinetics and a convective transport algorithm that is

accurate enough to resolve shocks, Mach structures, and reaction zones. The

convective transport algorithm used here has been tested extensively and we

understand its capabilities and limitations. The induction parameter model used

for the chemical kinetics is a phenomenological model derived from a detailed
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chemical reaction rate mechanism. Such a parametric model has the potential of

being useful in calculations such as these when either we cannot afford to use

the full chemical reaction scheme or when such a scheme is not available but we

have experimental data on ignition and energy release times. However, the only

way to benchmark the coupled models is by comparing to experiments and to calcu-

lations containing the detailed chemical rate scheme. With increased Computational

speed and memory available, we are close to being able to include a detailed

chemical reaction model at least for hydrogen-oxygen combustion.

We also have found that the simulations are useful for graphically displaying

the detailed, evolving structure of the detonation front. The results shown

above have provided insight into some aspects of the mechanism by which a self-

sustaining detonation propagates. They have indicated that the curvature of the

transverse wave at the time of its reflection is extremely important to the

resulting cell structure. First we observe in the simulations that the final

result of a transverse wave collision is a reversal of the curvature of the

transverse wave. This implies that the natural cell size might be defined as

that distance between two triple points which occurs when the 'Irvature of two

oppositely moving transverse waves goes nearly to zero. This is substantiated

by the evidence given above that if the tails of a transverse wave collide first,

flattening of the cell occurs. Further, if the heads of the transverse waves

collide first, an unburned pocket can form.

Future calculations will test several aspects of the results presented

above. First, the approach for predicting cell sizes must now be tested for

a wide range of hydrogen-oxygen mixtures, especially those whose detonation cell

sizes are well-known from experiments. This should provide a better test of

the validity of the induction parameter model for the chemistry, and tell us

when and if we need more complete chemical models. Then calculations such as

these with an induction parameter model can be applied to methane and Other
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materials for which good chemical kinetic data exists. Finally, more resolved

calculations must be done and the details of the structure and evolution of the

9, 22-26transverse wave must be compared to previous observations

The observations presented of the structure are very convincing, but much more

intermediate data is required for clarity and verification.
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FIGURE CAPTIONS

Figure 1. Composite of density contours from seven timesteps in the calculation

of a propagating detonation in a hydrogen-oxygen-argon mixture in

a 5 cm high tube. The direction of movement of the triple point is

indicated by the lines with arrows.

Figure 2. Calculated paths of triple points for the same mixture as in

Figure 1. (A) 5 cm high tube. (B) 7 cm high tube. (C) 9 cm high

tube.

Figure 3. Temperature contours at six different times for the 5 cm tube

calculation. The arrows indicate the direction of propagation of

the triple points. The region between 1300 and 2100 K is shaded.

Figure 4. Pressure contours for the S cm tube calculation. The Mach stem,

incident shock, and transverse waves are marked by M, I and TW,

respectively.
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ABSTRACT

Recent studies on the direct initiation of gaseous detonations have

shown that initiation depends not only on the energy deposited but also on

the rate at which it is deposited, namely the power. In this paper, we have

used a theoretical model to determine the relation between the power and the

energy required for the initiation of planar, cylindrical and spherical

detonations in a detonable gas mixture. The results from the model show that

the qualitative differences in the power-energy relations obtained from two

different experimental arrangements are due to differences in the geometry.

We also show that the minimum power requirement corresponds to a shock of

minimum Mach number only in the case of planar detonations. Finally, the

effect on the power-energy relation of the ratio of specific heats and the

experimental uncertainties in the determination of the induction times have

been studied for an acetylene-oxygen-nitrogen mixture.
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INTRODUCTION

The early studies of direct initiation of gaseous detonations*

established the importance of the magnitude of the source energy. More-

recent studies* have shown the importance not only of the energy but also of

the rate at which the energy is deposited, namely the power. The

experimental results of Lee et al. (1975) indicate that there is a minimum

detonation energy, Em , below which a detonation would not occur no matter

what the power is and that there is a minimum power, P m' below which a

detonation would not occur no matter what the total energy is. Later, they

(Knystautas and Lee, 1976) noted that the requirement for a minimum value for

the power of the source indicates that the source must be capable of

generating a shock wave of certain minimum strength (Mach number). They also

concluded that the minimum energy requirement implied that the shock wave

must be maintained at or above this minimum strength for a certain minimum

duration.

Recently these ideas have been used by Dabora (1980, 1982) to obtain a

relation between the power and energy required for the direct initiation of

hydrogen-air detonations in a shock tube. However, this power-energy

relation is very different qualitatively from those of Knystautas and Lee

(1976). More recently-Abouseif and Toong (1982) have proposed a simple

theoretical model to determine the power-energy relation and predict their

respective threshold values. The predictions based on their model were in

qualitative agreement with the experiments of Knystautas and Lee (1976).

*See Zeldovich et al. (1956), Litchfield et al. (1963) and Freiwald and Koch

(1963).
*See Oppenheim (1967), Bach et al. (1971), Meyer et al. (1973), Lee et al.

(1975) and Knystautas and Lee (1976).

C-7



In this paper we have modified and extended the basic model proposed by

Abouseif and Toong (1982) and have used it to determine the relation between

the power and the energy required or the initiation of pln-. vyiindrical

and spherical detonations in a detonable gas mixture. Specifically, we

discuss its application to an acetylene-oxygen-nitrogen mixture. We have

used the results from the model to explain the qualitative differences

between the experimental results of Knystautas and Lee (1976) and Dabora

(1980). The relation between the minimum power requirement and the Mach

number of the shock wave has also been examined. Some of the limitations of

the model are discussed, and several applications are described.
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THE THEORETICAL MODEL

We can, in principle, study the direct initiation of detonations by

performing detailed numerical simulations of the flow field generated by a

given source of energy. In general, such a calculation is a complicated,

multidimensional, multispecies, time-dependent problem. Part of the

complication and cost of such calculations arises from the solution of the

conservation equations, and part of it arises from integrating the large

number of ordinary differential equations describing the chemical reactions.

This latter factor is further complicated by the fact that we usually do not

have an adequate representation of th- chemical reactions with which to work.

Thus, a convenient, inexpensive way to evaluate the relative tendency of

different explosive mixtures to detonate would be very useful. Below we

develop and expand a simple theoretical model proposed earlier by Abouseif

and Toong (1982). Although this approach is not as precise as solving the

full set of equations numerically, it offers a number of important insights

and gets around the requirement of knowing the detailed chemical kinetics.

The model considers the flow generated by the motion of a constant

velocity shock wave in planar, cylindrical and spherical geometries. As this

shock wave passes through a gas mixture, the gas temperature and pressure

increases. Due to this increase in temperature and pressure, ignition can

occur in the shock heated gas mixture after the elapse of a certain time and

this may lead to detonation.

A constant velocity shock wave can be formed in each of the three

geometries by the motion of a constant velocity piston (Taylor, 1946;

Kailasanath and Oran, 1983). Furthermore, it has been shown (Chu, 1955) that

a pressure and velocity field identical to that ahead of a constant
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velocity piston can be generated by appropriate energy addition. For

example, a flow field bounded by a constant velocity planar piston and a

constant velocity planar shock wave can be generated by a planar energy

source with a constant rate of energy deposition. An example of such an

energy source is the high pressure driver in a uniform shock tube. In -

general, the source power P8 required to generate a constant velocity

piston in planar, cylindrical and spherical geometries can be written as

(Abouseif and Toong, 1982; Kailasanath and Oran, 1983):

PS (t) -l1 C-Ppu t ,

where Ca = 1, 2r, 4v for a - 1,2,3 corresponding to the planar, cylindrical

and spherical geometries respectively; p p and up are the pressure and

velocity at the piston surface and t is the duration of energy deposition.

The energy deposited is given by the time integral of the power, that is

Ca a L
E(t) - P a t (2)

Equations (I) and (2) give the source power and the source energy

required to generate a'constant velocity piston in the three geometries. As

shown elsewhere (Kailasanath and Oran, 1983), if the piston velocity is

steady, a constant velocity shock wave could be generated ahead of it. If

the piston velocity is reduced (by altering the energy deposition rate),

rarefaction waves will be generated ahead of it and these, on catching up
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with the shock wave , will reduce the shock velocity. However if the shock

has been in motion for a sufficiently long time, chemical reactions would

begin in the shock heated gas mixture. Then, even if the piston decelerates

and produces rarefaction waves, these will have very little effect on the

motion of the shock. In this case we could have a detonation.

Let us call the minimum time of shock travel required to initiate

a detonation tcr. Using this in Eqs. (1) and (2), we have

(E) Y C a a a (3)
s cr ( , "pUp tcr

and

(Ps C C u a t -1 (4)
sCP T= a p p cr

In the planar case, the pressure pp and fluid velocity up at the piston

surface are the same as those just behind the shock. However, in the

cylindrical and spherical cases, the flow field between the shock and the

piston surface is nonuniform and can be obtained by solving the governing

partial differential equations. However, the solution procedure is

considerably simplified if we seek a similarity solution. Then the system of

partial differential equations can be reduced to a system of coupled ordinary

differential equations:

(u-L) dp + du + ( u1) 0 (5)
p dL dL L
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(u-L) du _ dp (6)dL p dL

d. p dP (7)
dL p dL

In the above system of equations, the density p, the velocity u and the

pressure p are all functions of the similarity variable L, which is equal to

the radial location r divided by the time t. The pressure and the velocity

at the piston surface which are required in Eqs. (3,4) can be obtained by

solving Eqs. (5-7) in the following manner. For a shock of a given Mach

number, we can calculate the flow condition just behind the shock using

normal shock relations. We can then integrate Eqs. (5-7) from just behind

the shock to the piston surface to obtain Pp and up which are needed in

Eqs. (3,4). The procedure is further simplified by appropriately combining

Eqs. (5-7) into two equations and normalizing them. This is discussed in

detail elsewhere (Kailasanath and Oran, 1983).

In order to determine the power-energy relation using Eqs. (3,4) we also

need to know tcr* This time must at least be equal to the time at which

ignition first occurs tn the flow field (Abouseif and Toong, 1982). As noted

by Urtiew and Oppenheim (1967), ignition usually occurs first at the contact

surface (i.e., at the piston surface here) since the temperature and pressure

is highest at this location. So a first estimate of the time tcr would

be the induction delay time corresponding to the conditions at the piston

surface.
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RESULTS AND DISCUSSION

We have used the model described above to determine the power-energy

relations for the initiation of planar, cylindrical, and spherical

detonations in an acetylene-oxygen-nitrogen mixture. The initial temperature

and pressure of the mixture were taken to be 300 K and 100 torr (0.1316 atm)

to correspond to the initial conditions in the experiments of Knystautas and

Lee (1976). As a first approximation, the time duration necessary for

successful initiation was assumed to be equal to the chemical induction time

of the mixture corresponding to the conditions at the piston surface.

The critical source power given by Eq. (4) is time dependent for the

cylindrical and spherical cases. In order to relate the critical source

energy to a critical source power, we need to define an average or

"effective" power. Following Abouseif and Toong (1982), we define an average

critical source power as

(Es)(P ) scr (8)
s av t

cr

This power ilso corresponds to the critical peak averaged power of the source

as defined by Knystautas and Lee (1976). For the discussion below, we have

used the terms power and energy to refer to the average critical source power

(Eq. (8)) and the critical source energy (Eq. (3)).

Cylindrical Detonations in an Acetylene-Oxygen-Nitrogen Mixture

We have determined the power-energy relation for the initiation of

cylindrical detonations using Eqs. (3) and (8). The induction time data used
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were those obtained by Edwards et al. (1981) for an acetylene-oxygen-nitrogen

(2:5:4) mixture and are given by:

Log (T[02) = -9.41 (± 0.2) + 71.35 (± 3.34) (9)
19.14 T

where T is the induction time in seconds, (0.] is the concentration in

mol/liter, and T is the temperature in thousands of degrees K. Three dif-

ferent power-energy relations obtained from the theoretical model are shown

in Figure 1. Curve A was obtained by using the smallest value of the induc-

tion time given by Eq. (9), that is, by choosing the negative signs. Curve B

was obtained by using the mean values and curve C by using the largest value

of the induction time (by choosing the positive signs). The arrows on curve

C indicate the direction of increasing Mach number. First, we note that each

curve has a minimum power and a minimum energy. We also observe that as the

Mach number decreases below the Mach number corresponding to the minimum

power, both the average source power and the source energy increase. How-

ever, when the Mach number increases above the Mach number corresponding to

the minimum power, the energy first decreases to the minimum energy and then

increases again. All three curves exhibit these same qualitative trends.

The shape of these curves can be explained in the following manner. As

the Mach number of the shock wave decreases, the pressure and the temperature

behind it decrease. This decrease also results in a decrease of the pressure

and velocity at the piston surface. This would tend to decrease both the

power and the energy since, as seen in Eqs. (1,2),

p - ppU t (10)
p p

E - p u2 t2  (11)
pp
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This tendency is, however, opposed by the tendency of the induction time to

increase with decreases in the pressure and the temperature. For low Mach

numbers, (i.e., low temperatures behind the shock) a small decrease in the

Mach number of the shock wave leads to a large increase in the induction

time. The shape of the curves in Figure 1 implies that this increase in

induction time is more than sufficient to compensate for the decrease in the

pressure and the velocity for Mach numbers below that corresponding to the

minimum power. Therefore both the power and the energy increase with

decreasing Mach number. Since the energy is proportional to the product of

the power and the induction time (Eqs. (10,11)), the energy increases faster

with induction time than the power does. As the Mach number increases above

that corresponding to the minimum power, the increase in the pressure and

velocity is larger than the decrease in the induction time. Therefore the

power increases. However, for a certin range of Mach numbers, the increase

in the pressure and velocity is not sufficient to compensate for the decrease

in the square of the induction time. Therefore the energy decreases until it

attains a minimum value, even though the power increases. Finally, for Mach

numbers above that corresponding to the minimum energy, the increase in the

pressure and velocity ;re easily able to overcome the decrease in the induc-

tion time with increasing Mach number and both the power and the energy

increase. This occurs because the rate of decrease of the induction time

with temperature is small for high temperatures (i.e., high Mach numbers)

according to Eq. (9).

The power-energy curve obtained using data from the spark ignition

experiments of Knystautas and Lee (1976) has also been included in Figure I

as curve D. The data for curve D is the sae as that used by Abouseif and
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Toong C1982) for their Figure [1], and was originally presented in Figure [4)

of Knystautas and Lee (1976). Curve D exhibits the same qualitative trends

as those of the theoretical curves discussed above. However, we observe that

the values of the minimum power and the minimum energy from the four curves

are very different from each other. The differences in the values of these

parameters from the three "theoretical" curves (A,B, and C) indicate that the

experimental uncertainties in the values of the induction times used have a

significant effect on the value of the minimum power and the minimum energy.

The minimum power varies from about 0.3 MW/cm to about I MW/cm and the

minimum energy varies from about 0.012 J/cm to about 0.1 J/cm. The

experimentally determined minimum power (from curve D) is about 0.13 MW/cm,

which is lower than the calculated values, and the minimum energy is about

0.1 J/cm, which is at the top of the range of calculated values.

The quantitative differences between the experimental and theoretical

values could be due to a variety of factors, a few of which we now discuss.

As observed from curves A, B, and C, uncertainties in the induction time data

can have a significant effect on the values of the minimum power and the

minimum energy. Expressions such as Eq. (9) for the induction time are

obtained by fitting to a limited range of experimental data. However, here

we have used Eq. (9) for a range of temperatures and pressures far greater

than that over which it was determined. Furthermore, for obtaining the

theoretical results, we had assumed a constant value of 1.2 for y, the ratio

of specific heats. For high Mach numbers, the Y of the shocked gas could be

very different from that ahead of the shock wave because of the large

temperature difference across the shock wave. The effect of Y on the power-

energy relations is discussed below.
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Effect of Y on Power-Energy Relations

The power-energy calculations were repeated using different values for Y

and the results are shown as curves A and C in Figures 2 and 3. In Figure 2,

the average source power is shown as a function of the shock Mach number and

in Figure 3, the source energy is shown as a function of the shock Mach

number. From these figures, we observe that y does indeed have a significant

effect on the minimum power and the minimum energy. When y is changed from

1.1 to 1.4, the minimum source power decreases from 2.0 MW/cm to 0.18 MW/cm

and the minimum energy decreases from 0.065 to about 0.02 J/cm. The Mach

number at which the shock must travel to attain the minimum power is also

very different, as seen in Figure 2. Changing y from 1.4 to 1.1 doubles the

Mach number corresponding to the minimum power from 8 to 16. 'he effect of Y

on the power-energy relation arises partly from the factor (Y/y-l) in Eqs.

(3) and (4) and partly from the fact that the temperature behind a shock of

given Mach number is very different for different y's.

The effect of the factor (y/-Y-l) is to change quantitatively the values

of the source power and the source energy corresponding to the shock of a

given Mach number and is the same for all Mach numbers. The changes in the

temperature behind a shock wave due to assumed differences in y is, however,

a function of the shock Mach number. Let us consider a shock wave of the

Mach number 10. In Table 1 we have given the pressure ratio, the temperature

ratio and the temperature behind this shock wave for different values of y.

We hate also included the case where Y is different across the shock wave as

case 3. For obtaining case 3, we have re-derived the normal shock relations

but with variable Y across the shock wave. The derivation of these

"modified" shock r-lations has been presented in detail elsewhere
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(Kailasanath and Oran, 1983). We see that for Case 3, the temperature behind

the shock wave is significantly lower than that for case 2. Case 3 is a more

realistic case than case 2, since Y is generally lower behind the shock.

However, the appropriate y for conditions behind the shock wave is different

for different Mach numbers, since the temperatures are different. Thus a

better approach is first to guess a Y for each Mach number and use it to

calculate the temperature behind the shock. This new temperature implies a

new y. Using this new y in the modified shock relations we get a new

temperature. This iterative procedure is continued till convergence is

achieved.

The power-energy calculations were repeated using the correct y (as

described above) and the results are presented as curve B in Figures 2 and 3.

For low Mach numbers, curve B lies close to curve A and for very high Mach

numbers it tends towards curve C. This is not surprising since for the

acetylene-oxygen-nitrogen mixture being studied here, y varies from 1.31 to

1.16 when the Mach number changes from 2 to 24. From curve B in Figures 2

and 3 we also note that the minimum power and the minimum energy conditions

occur at Macn number of 10.0 and 15.5 respectively.

From the above discussion it is clear that the effect of using the

correct Y is mainly to alter the Mach number corresponding to the minimum

power and the minimum energy condition. However, the calculated values of

the minimum power and the minimum energy are still different from those

obtained experimentally. Therefore we examine another possible reason for

the differences between the experimental and the theoretical values: the

uncertainty in the appropriate time to be used for t in Eqs. (3) and (8).
cr
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Critical Time for Energy Deposition

As a first approximation, we assumed that energy must be deposited until

ignition occurs at some point in the flow field between the shock and the

piston surface. Since, in general, the temperature and pressure is highest

at the piston surface, we used the chemical induction time corresponding to

these conditions as the appropriate time for energy deposition. However,

when there is fluid motion, ignition can occur before the time corresponding

to the constant volume, homogeneous chemical induction time. For example,

for a certain range of temperatures and pressures, oxy-hydrogen mixtures with

small perturbations could have significantly reduced ignition times. The

specific effect of this phenomenon on the power-energy relations will be

reported in a subsequent paper. In gas mixtures which are not particularly

sensitive to perturbations, the shortest induction time in the shocked region

seems to be the necessary condition for the initiation of detonations.

However, we need to consider whether this is a sufficient condition also.

Shock tube simulations have indicated that the time at which a

detonation wave is first observed is only very slightly longer than the time

at which ignition first occurs. That is, the time between ignition and the

formation of a detonation wave is small when compared to the induction time.

This is not surprising when we consider the fact that for many reactive

systems, the reaction time is very small compared to the induction time. The

results of Abouseif and Toong (1982) on the initiation of planar detonations

also supports this observation. However we have not studied the effect of

geometry on the time between ignition and detonation. It could very well be

that due to the volume change in spherical and cylindrical geometries, this

time is significant when compared to the induction time. This needs to be
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studied before one can confidently use the induction time as the appropriate

time for tcr"

We have compared the results from the theoretical model for the case of

cylindrical detonations with the experimental results of Knystautas and Lee

(1976) because in both cases the amount of energy deposited was proportional

to the second power of the time. However, it is important to note that in

the theoretical model we have considered only constant velocity shock waves

and it was this that made it possible to assign a single induction time to

each shock wave. If the velocity of the shock wave is not constant, it is

not possible to assign a single induction time to it since the flow field

behind the shock wave would be time-dependent. Thus, shock waves of

different time histories can deposit the same amount of energy but at

different average source powers. This could be an imporant factor in the

quantative differences between the experimental and theoretical values.

Initiation of Planar Detonations

The derived power-energy relation for the initiation of planar detona-

tions in the same oxy-acetylene mixture is shown in Figure 4. In this

figure, we also show the shock tube data of Dabora (1980) on the direct

initiation of detonations in a stoichiometric hydrogen-air mixture. The

point to notice is that both curves exhibit the same qualitative behavior.

Unlike the cylindrical case, each value of the power corresponds to an unique

value of energy. The direction of increasing shock strength (as determined

by the Mach number) is also shown in Figure 4. In the planar case, we see

that as the Mach number decreases the power always decreases. As noted

earlier in the cylindrical case, as the Mach number decreases, the power
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decreases only up to the minimum power. Then the power increases with a

decrease in the Mach number of the shock wave. Therefore, the qualitative

difference in the experimental data of Knystautas and Lee (shown in Figure 1)

and Dabora (shown in Figure 4) are due to the difference in the geometry of

the two experiments.

We also observe in Figure 4 that as the Mach number decreases, we need

more and more energy to initiate a detonation. The trend of the curves

indicates that there is a minimum Mach number below which a detonation will

not occur (i.e., would require an infinite amount of energy). The value of

the power corresponding to this minimum Mach number is the minimum power.

This agrees with the observation made by Knystautas and Lee (1976) that the

requirement for a minimum value of the source power indicates that the source

must be capable of generating a shock wave of a certain minimum Mach numb r.

However, we observe from Figure 1 (see also Figure 2) that for the case of

cylindrical detonations, the minimum power does not correspond to the shock

wave of minimum Mach number. In the cylindrical case, it is possible to

initiate a detonation with a shock wave of lower Mach number than that

corresponding to the minimum power. Such a shock will have to be maintained

for a longer time than the shock corresponding to the minimum power and hence

will require a larger amount of energy.

Initiation of Spherical Detonations

The power-energy curve for the initiation of spherical detonations is

similar to the curve for the cylindrical case. However, for the case of

spherical detonations, the power is

P - p U3 t2 , (12)
p p
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but the energy is still

E P t. (13)

Since the power and energy are proportional to higher powers of the time, t,

uncertainties in t will have a greater effect on the value of the minimum

power and the minimum energy. Further work is being carried out currently to

study the initiation of spherical detonations in hydrogen-air mixtures and to

compare this to experimental data.
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SU "MARY AND CONCLUSIONS

In this paper we have used a theoretical model to determine the relation

between the power and the energy required for the initiation of planar,

cylindrical and spherical detonations in a gas mixture. The results

discussed above show that though the simple theoretical model has significant

limitations, it can still be used to explain the qualitative differences in

the power-energy relations obtained from different experimental arrangements.

Another result from the model is that the minimum power requirement

corresponds to shock of minimum Mach number only in the case of planar

detonations.

The results from the model on the initiation of cylindrical detonations

in an acetylene-oxygen-nitrogen mixture qualitatively agree with experimental

data. Some of the reasons for the quantitative differences have been

examined. One of the important parameters in the model is the critical time

for energy deposition. This time is related to the induction time and the

results presented above show that uncertainties in the induction time data

used can have a significant effect on the power-energy relations. The

results also indicate that further work needs to be done to determine the

effect of the geometry on the critical time for energy deposition.

The quantitative differences between the experimental and theoretical

results may also arise because of the model assumption that the velocities of

the shock waves are constant. This may not be so in the experiments.

Furthermore, the model considers only the minimum power and energy required

to initiate a detonation wave. We have not examined whether this would

result in a self-sustained, propagating detonation wave. Detonation

propagation is characterized by complicated interactions among incident shock
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waves, transverse waves and Mach stems which form detonation cells. These

rust be described by multidimensional theories and si=lations. The results

from such studies need to be considered to extend the work presented here to

the study of self-sustained detonation waves.

One application of the model presented here is to determine the relative

tendency of different explosives to detonate, since the limitations of the

model would then be less critical. This would be particularly useful for

studying the effect of additives on the detonability of condensed phase

explosives. Further work is being carried out to modify the model for such

applications.

C-24



Acknowledgements

The authors greatfully acknowledge suggestions, useful conversations

with, and help from Jay P. Boris and T.R. Young. The authors also

acknowledge the -itorial assistance of Ms. F. Rosenberg. This work has been

supported by the Office of Naval Research through the Naval Research

Laboratory.

C-25



REFERENCES

Abouseif, G.E. and Toong, T.Y. (1982) On Direct Initiation of Gaseous

Detonations. Combust. Flame 45, 39-46.

Bach, G.G., Knystautas, R. and Lee, J.H. (1971) Initiation Criteria for

Diverging Gaseous Detonations. Thirteenth Symposium (International) on

Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1097-1110.

Chu, B.T. (1955) Pressure Waves Generated by Addition of Heat in a Gaseous

Medium. NACA TN 3411, NACA, Washington, DC, 47 pp.

Dabora, E.K. (1980) Effect of Additives on the Lean Detonation Limit of

Kerosene Sprays. UCONN0507-129-F, The University of Connecticut,

Storrs, CT, 46 pp.

Dabora, E.K. (1982) The Relation between Energy and Power for Direct

Initiation of Hydrogen-Air Detonations. Presented at the Second

International Workshop on the Impact of Hydrogen on Water Reactor

Safety, Albuquerque, NM.

Edwards, D.H., Thomas, G.O. and Williams, T.L. (1981)Initiation of Detonation

by Steady Planar Incident Shock Waves. Combust. Flame 43, 187-198

Freiwald, H. and Koch, H.W. (1963) Spherical Detonations of Acetylene-Oxygen-

Nitrogen Mixtures as a Function of Nature and Strength of Initiation.

Ninth Symposium (International) on Combustion, Academic Press, New York,

NY, pp. 275-281.

Kailasanath, K. and Oran, E.S. (1983) The Relation between Power and Energy

in the Shock Initiation of Detonations - I. NRL Memorandum Report,

Naval Research Laboratory, Washington, DC (to be published).

Knystautas, R. and Lee, J.H. (1976) On the Effective Energy for Direct

Initiation of Gaseous Detonations. Combust. Flame 27, 221-228.

C-26



Lee, J.H., Knystautas, R. and Guirao, C.M. (1975) Critial Power Density for

Direct Initiation of Unconfined Gaseous Detonations. Fifteentn

Symposium (International) on Combustion, The Combustion institute,

Pittsburgh, PA, pp. 53-67.

Litchfield, E.L., Ray, M.H. and Forshey, D.R. (1963) Direct Electrical

Initiation of Freely Expanding Gaseous Detonation Waves. Ninth

Symposium (International) on Combustion, Academic Press, New York, NY,

pp. 282-286.

Meyer, J.W., Cohen, L.M. and Oppenheim, A.K. (1973) Study of Exothermic

Processes in Shock Ignited Gases by the use of Laser Shear

Interferometry. Combust. Sci. Tech. 8, 185-197.

Oppenheim. A.K. (1967) The No-Man's Land of Gasdynamics of Explosions. Appl.

Mech. Rev. 20, 313-319.

Taylor, G.I. (1946) The Air Wave Surrounding an Expanding Sphere. Proc.

Roy. Soc. (London), A 186, 273-292.

Urtiew, P.A. and Oppenheim, A.K. (1967) Detonative Ignition Induced by Shock

Merging. Eleventh Symposium (International) on Combustion, The

Combustion Institute, Pittsburgh, PA, pp. 665-670.

Zeldovich, Y.B., Kogarko, S.M. and Simonov, N.N. (1956) An Experimental

Investigation of Spherical Detonation of Gases. Soviet Phys.-JETP 1,

1689-1713.

C-27



TABLE HEADING

Table 1. Effect of the Ratio of Specific Heats
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CASE 'o a  Ys  ps/Po Ts/T o  Ts

1 1.2 1.2 109.000 10.900 3270.0

2 1.3 1.3 112.913 15.710 4712.89

3 1.3 1.2 118.426 11.454 3436.26

(a) The conditions ahead of the shock wave are denoted by "o"

and those behind by "s".
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FIGURE CAPTIONS

Figure 1. Power-energy relations for the initiation of cylindrical

detonations in an acetylene-oxygen-nitrogen mixture (2:5:4)

at 0.1316 arm and 300K. - The data for curve D was obtained from

spark ignition experiments (Knystautas and Lee, 1976). Curves A,

B, and C are explained in the text. The arrows on Curve C

indicate the direction of increasing Mach number.

Figure 2. The average source power as a function of the shock Mach number.

Curves A and C were obtained assuming y to be constant across the

shock wave. Curve B was obtained assuming Y to be variable as

explained in the text.

Figure 3. The source energy as a function of the shock Mach number. Curves

A and C were obtained assuming y to be constant across the shock

wave. Curve B was obtained assuming y to be variable as

explained in the text.

Figure 4. Power-energy relations for the initiation of planar detonations.

The x's are data obtained from shock tube experiments (Dabora,

1980).
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SHOCK INITIATION OF DETONATIONS IN HYDROGEN-AIR MIXTURES
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SHOCK INITIATION OF DETONATIONS IN HYDROGEN-AIR MIXTURES

K. Kailasanath*, E.S. Oran, T.R. Young and J.P. Boris
Laboratory for Computational Physics

Naval Research Laboratory
Washington, DC 20375

*Science Applications, Inc. McLean, Virigina

Background

A simple theoretical model was developed to determine the relation
between the power and energy required for the shock initiation of gaseous
detonations []. Te model successfully explained the qualitative
differences in the power-energy relations obtained from two different
experimental arrangements 121. 7he model also gave qualitatively good
predictions of the power-energy relation for the initiation of cylindrical
detonations in an acetylene-oxygen-nitrogen mixture [2]. However, the
minimum power and the minimum energy predicted by the model were
quantitatively different from those obtained experimentally. One reason for
the difference is the uncertainty in the appropriate time to be used for the
critical time for which energy must be deposited in order to initiate a
detonation 11). In this paper we address this issue in some detail by
comparing the results from the simple theoretical model to those obtained
from detailed numerical simulations on the initiation of planar detonations
in an hydrogen-air mixture.

"he Theoretical Model

The model, based on one developed earlier by Abouseif and Toong 13],
considers the flow generated by the motion of a constant velocity shock wave
in planar, cylindrical and spherical geometries. As this shock wave passes
through a gas mixture, the gas temperature and pressure increases. Due to
this increase in temperature and pressure, ignition can occur in the shock
heated gas mixture after the elapse of a certain time and this may lead to
detonation.

A constant velocity shock wave can be formed in each of the three
geometries by the motion of a constant velocity piston [4,1). Furthermore
it can be shown [5] that a pressure and velocity field identical to that
ahead of a constant velocity piston can be generated by appropriate energy
addition. For example, a flow field bounded by a constant velocity planar
shock wave and a constant velocity planar piston can be generated by a
planar energy source with a constant rate of energy deposition. An example
of such an energy source is the high pressure driver in a uniform shock
tube. In general, the source power required to generate a constant velocity
piston in planar, cylindrical and spherical geometries can be written as

Ps(t) - y C0 pu; t"- 1  , ()
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where Ca = 1, 2'9, 4r for a = Ii 2, 3 corresponding to the planar,
cylindrical and spherical geometries respectively; p p and up are the
pressure and velocity at the piston surface and t is the duration of energy
deposition. 7he energy deposited is given by the time intearal of the
power, that is

E (t) Y C a .a(2)

Equations (1) and (2) give the source power and the source energy
required to generate a constant velocity piston in the three geometries.
If the piston velocity is steady, a constant velocity shock wave could be
generated ahead of it E1]. If the piston velocity is reduced, rarefaction
waves will be generated ahead of it and these, on catching up with the
shock wave, will reduce the shock velocity. However if the shock has been
in motion for a sufficiently long time, chemical reactions can begin in the
shock heated gas mixture. Then, even if the piston decelerates and produces
rarefaction waves, these will have very little effect on the motion of the
shock. In this case we have a detonation.

Let us call the minimum time of shock travel required to initiate a
detonation tcr. Using this in Eqs. (1) and (2), we have

(Ps)cr = C0 P ppua tc (3)

and

(a a. ta 
(4)s cr = TkT7 -- pp cr

In the planar case, the pressure pp and fluid velocity up at the piston
surface are the same as those just behind the shock. However, in the
cylindrical and spherical cases, the flow field between the shock and the
piston surface is nonuniform and can be obtained by using a similarity
solution procedure [1).

In order to determine the power-energy relation using Eps.(3,4), we
also need to know tcr. Previously we set this time equal to the
induction delay time corresponding to the conditions at the piston surface.
in this paper we critically look at this assumption by comparing the results
from the above theoretical model to those from detailed numerical
simulations. The numerical model used for these detailed simulations is
briefly described below.

The Numerical Model

The one-dimensional reactive shock model (6,71 used to perform the
simulations solves the time-dependent conservation equations for mass,
momentT. and energy coupled to the equations describing the chemical
kinetics. The model uses an explicit, Eulerian finite difference
formulation with a sliding rezone capability to provide resolution around
moving gradients. The solutions of the equations describing the fluid
dynamics and the chemistry of the problem are coupled using time-step
splitting techviques 17).
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The convective transport terms in the conservation equations are solved
using one variant of the Flux-Corrected Transport (FCT) method [8). This is
a conservative, monotonic algorithm with fourth-order phase accuracy and
does not require artificial viscosity to stabilize shocks. nhe ordinary
differential equations describing the chemical kinetics are solved using
VSAIM., a vectorized version of the selected asymptotic integration method
employed in CHEMEQ [9]. The chemical kinetics rate scheme consists of about
fifty rates relating the species H2 , 02' H, 0, OH, HO, H20 and H2 0 2 .

Results and Discussion

We first used the theoretical model to determine the power-energy
relations for the initiation of planar detonations in a hydrogen-oxygen-
nitrogen (2:1:4) mixture. The initial temperature and pressure of the
mixture were 298 K and 0.5 atm, respectively. The time duration necessary
for successful initiation was assumed to be equal to the chemical induction
time of the mixture corresponding to the conditions at the piston surface.
he induction time used was obtained by integrating the same chemical

kinetics rate equations used in the detailed simulations.

We then set up the numerical model described above to simulate shock
tube experiments and this describes the same problem solved by the
theoretical model. By varying the pressure ratio across the diaphragm of a
uniform shock tube we obtained constant velocity shocks of various
strengths in the driven section. The driven section was assumed to be
filled with a hydogen-oxygen-nitrogen mixture (2:1:4) at 298 K and 0.5 atn
to correspond to the conditions in the theoretical model. Fcr each pressure
ratio, we noted the times at which ignition and detonation occurred as well
as the pressure and velocity at the contact surface. From these quantities
we obtained the power and energy required to initiate a detonation.

The results from the detailed simulations agreed with the predictions
of the theoretical model when the Mach number of the shock wave was high.
However for low mach numbers, the detailed simulations showed initiation
with lower energies than those predicted by the theoretical model. A closer
look at the results showed that the pressures and temperatures near the
contact surface were in the weak-ignition regime and therefore very
sensitive to perturbations [10].

in order to evaluate quantitatively how a specific type of perturbation
affects ignition, we then simulated the effects of sound waves in a
hydrogen-oxygen-nitrogen mixture by reconfiguring the numerical model
described earlier. This gave us a quantitative relation between the
induction time and sound waves of various amplitudes and frequencies. The
effect of such sound wave perturbations on the power-energy relation has
also been determined.
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Conclusions

From the results presented in this paper, we observe that:
(1) for the initiation of planar detonations, the appropriate time to use
in the theoretical model is the induction time, provided the mixture under
consideration is not sensitive to perturbations;
(2) for mixtures which are sensitive to perturbations, the power-energy
relation will also depend upon the actual perturbations present in the
system;
(3) the effect of sound wave perturbations of a range of amplitudes and
frequencies on the power-energy relation has been determined.
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energy required for the initiation of planar, cylindrical and spherical detonations in a detonable gas
mixture. The results from the model show that the qualitative differences in the power-energy
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relations obtained from two different experimental arrangements are due to differences in the
geometry. We also show that the minimum power requirement corresponds to a shock of
minimum Mach number only in the case of planar detonations. Finally, the effect on the
power-energy relation of the ratio of specific heats and the experimental uncertainties in the
determination of the induction times have been studied for an acetylene-oxygen-nitrogen
mixture.
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THE RELATION BETWEEN POWER AND ENERGY IN THE
SHOCK INITIATION OF DETONATIONS

I. Basic Theoretical Considerations and the Effects of Geometry

I. INTRODUCTION

The early studies of direct initiation of gaseous detonations1,2)3

established the importance of the magnitude of the source energy. More

recent experiments4' 5,6 have shown the importance not only of the energy

but also of the rate at which the energy is deposited, namely the power. The

experimental results of Lee et al. 5 indicate that there is a minimum detona-

tion energy, Em, below which a detonation would not occur no matter what

the power is and that there is a minimum power, Pm' below which a detona-

tion would not occur no matter what the total energy is. Later, they noted 6

that the requirement for a minimum value for the power of the source indi-

cates that the source must be capable of generating a shock wave of certain

minimum strength (Mach number). They also concluded that the minimum energy

requirement implied that the shock wave must be maintained at or above this

minimum strength for a certain minimum duration.

Recently these ideas have been used by Dabora 7'8 to obtain a relation

between the power and energy required for the direct initiation of hydrogen-

air detonations in a shock tube. However, this power-energy relation is very

iifferent qualitatively from those of Knystautas and Lee 6. More recently

Abouseif and Toong 9 have proposed a simple theoretical model to determine the

power-energy relation and predict their respective threshold values. The

predictions based on their model were in qualitative agreement with the

experiments of Knystautas and Lee 6.

Manuscript approved June 22. 1983.
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In this paper we have modified and extended the basic model proposed by

Abouseif and Toong 9 and have used it to determine the relation between the

power and the energy required for the iaitiation of planar, cylindrical and

spherical detonations in a detonable gas mixture. Specifically, we discuss

its application to a stoichiometric oxy-acetylene mixture. We have used the

results from the model to explain the qualitative differences between the

experimental results of Knystautas and Lee
6 and Dabora7 . The relation

between the minimum power requirement and the Mach number of the shock wave

has also been examined. Some of the limitations of the model are discussed,

and several applications are described.
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Ii. THE THEORETICAL MODEL

We can, in principle, study the direct initiation of detonations by

performing detailed numerical simulations of the flow field generated by a

given source of energy. In general, such a calculation is a complicated,

multidimensional, multispecies, time-dependent problem. Part of the

complication and cost of such calculations arises from the solution of the

conservation equations, and part of it arises from integrating the large

number of ordinary differential equations describing the chemical reactions.

This latter factor is further complicated by the fact that we usually do not

have an adequate representation of the chemical reactions with which to work.

Thus, a convenient, inexpensive way to evaluate the relative tendency of

different explosive mixtures to detonate would be very useful. Below we

develop and expand a simple theoretical model proposed earlier by Abouseif

and Toong 9. Although this approach is not as precise as solving the full set

of equations numerically, it offers a number of important insights and gets

around the requirement of knowing the detailed chemical kinetics.

The model considers the flow generated by the motion of a constant

velocity shock wave in planar, cylindrical and spherical geometries. As this

shock wave passes through a gas mixture, the gas temperature and pressure

increases. Due to this increase in temperature and pressure, ignition can

occur in the shock heated gas mixture after the elapse of a certain time and

this may lead to a detonation.

A constant velocity shock wave can be formed in each of the three

geometries by the motion of a constant velocity piston1 0'1 . Furthermore,

it has been shownI1 that a pressure and velocity field identical to that

ahead of a constant velocity piston can be generated by appropriate energy
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addition. In Appendix A we have derived expressions for the energy and the

power which must be delivered by a source to generate a constant velocity

piston in the three geometries. The source power required is given by

P s (t) a pCppu 0 t

where C. . I, 21r, 4-- for a - 1,2,3 corresponding to the planar, cylindrical

and spherical geometries respectively; pp and up are the pressure and

velocity at the piston surface and t is the duration of energy deposition.

The energy deposited is given by the time integral of the power, that is

C
s p-i p

From the above equations we note that a planar energy source with a

constant rate of energy deposition can generate a constant velocity piston in

a planar geometry. An example of such an energy source is the high pressure

driver in a uniform shock tube. However for a constant velocity piston in a

cylindrical geometry,.we need a line source with a rate of energy deposition

proportional to time, and in a spherical geometry we need a point source with

an energy deposition rate proportional to the zecond power of the time.

Equations (1) and (2) give the source power and the source energy

required to generate a constant velocity piston in the three geometries. As

shown later (in Appendix B), if the piston velocity is steady, a constant

velocity shock wave could be generated ahead of it. If the piston velocity

is reduced (by altering the energy deposition rate), rarefaction waves will

be generated ahead of it and these, on catching up with the shock wave , will
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reduce the -hock velocity. However if the shock has been in motion for a

sufficiently long time, chemical reactions would begin in the shock heated

gas mixture. Then, even if the piston decelerates and produces rarefaction

waves, these will have very little effect on the motion of the shock. In

this case we could have a detonation.

Let us call the minimum time of shock travel required to initiate

a detonation tcr. Using this in Eqs. (1) and (2), we have

C
(Esr "L a pptCr (3)
s (rY-l0 r Pp p 'cr

and

(P - p t a- (4)
s cr C p p cr

In the planar case, the pressure pp and fluid velocity up at the piston

surface are the same as those just behind the shock. However, in the

cylindrical and spherical cases, the flow field between the shock and the

piston surface is nonuniform and can be obtained by solving the governing

partial differential equations. However, the solution procedure is

considerably simplified if we seek a similarity solution. The details of

this solution procedure ate given in Appendix B.

In order to determine the power-energy relation using Eqs. (3,4) we also

need to know tcr. This time must at least be equal to the time at which

ignition first occurs in the flow field 9 . As noted by Urtiew and

Oppenheim, 1 2 ignition usually occurs first at the contact surface (i.e., at

the piston surface here) since the temperature and pressure is highest at

this location. So a first estimate of the time tcr would be the

induction delay time corresponding to the conditions at the piston surface.
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III. RESULTS AND DISCUSSION

We have used the model described above to determine the power-energy

relations for the initiation of planar, cylindrical, and spherical

detonations in a stoichiometric oxy-acetylene mixture. The initial

temperature and pressure of the mixture were taken to be 300 K and 100 torr

(0.1316 atm) to correspond to the initial conditions in the experiments of

Knystautas and Lee 6 . As a first approximation, the time duration necessary

for successful initiation was assumed to be equal to the chemical induction

time of the mixture corresponding to the conditions at the piston surface.

The critical source power given by Eq. (4) is time dependent for the

cylindrical and spherical cases. In order to relate the critical source

energy to a critical source power, we need to define an average or

"effective" power. Following Abouseif and Toong9 , we define an average

critical source power as

(E)
(P ) cr (5)
s ay t

cr

This power also corresponds to the critical peak averaged power of the source

as defined by Knystautas and Lee 6 . For the discussion below, we have used

the terms power and energy to refer to the average critical source power

(Eq. (5)) and the critical source energy (Eq. (3)).

A. Cylindrical Detonations in an Acetylene-Oxagen-Nitrogen Mixture

We have determined the power-energy relation for the initiation of

cylindrical detonations using Eqs. (3) and (5). The induction time data used

were those obtained by Edwards et al. 1 3 for an acetylene-oxygen-nitrogen

(2:5:4) mixture and are given by:

Log (r[0 2 ]) =-9.41 (t 0.2) + 71.35 (2 3 (6)

)194 T
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where 7 is the induction time in seconds, [021 is the concentration in

mol/liter, and T is the temperature in thousands of degrees K. Three dif-

ferent power-energy relations obtained from the theoretical model are shown

in Figure 1. Curve A was obtained by using the smallest value of the induc-

tion time given by Eq. (6), that is, by choosing the negative signs. Curve B

was obtained by using the mean values and curve C by using the largest value

of the induction time (by choosing the positive signs). The arrows on curve

C indicate the direction of increasing Mach number. First, we note that each

curve has a minimum power and a minimum energy. We also observe that as the

Mach number decreases below the Mach number corresponding to the minimum

power, both the average source power and the source energy increase. How-

ever, when the Mach number increases above the Mach number corresponding to

the minimum power, the energy first decreases to the minimum energy and then

increases again. All three curves exhibit these same qualitative trends.

The ,hape of these curves can be explained in the following manner. As

the Mach number of the shock wave decreases, the pressure and the temperature

behind it decrease. This decrease also results in a decrease of the pressure

and velocity at the piston surface. This would tend to decrease both the

power and the energy since, as seen in Eqs. (1,2),

p - p upk (7)
p p

E - ppu2t2  
(8)

p p

This tendency is, however, opposed by the tendency of the induction time to

increase with decreases in the pressure and the temperature. For low Mach

numbers, (i e., low temperatures behind the shock) a small decrease in the

Mach number of the shock wave leads to a large increase in the induction
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Figure 1. Power-energy relations for the initiation of cylindrical

detonations in an acetylene-oxygen-nitrogen mixture (2:5:4)

at 0.1316 atm and 300K. The data for curve D was obtained from

soark ignition experiments [6]. Curves A, B, and C are explained

in the text. The arrows on Curve C indicate the direction of

increasing Mach number.
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7ime. The shape of the curves in Figure I implies that this increase 4n

induction time is more than sufficient to compensate for the decrease in the

oressure and the velocity for Mach numbers below that corresponding to the

minimum power. Therefore both the power and the energy increase with

decreasing Mach number. Since the energy is proportional to the product of

the power and the induction time (Eqs. (7,8)), the energy increases faster

with induction time than the power does. As the Mach number increases above

that corresponding to the minimum power, the increase in the pressure and

velocity is larger than the decrease in the induction time. Therefore the

power increases. However, for a certin range of Mach numbers, the increase

in the pressure and velocity is not sufficient to compensate for the decrease

in the square of the induction time. Therefore the energy decreases until it

attains a minimum value, even though the power increases. Finally, for Mach

numbers above that corresponding to the minimum energy, the increase in the

pressure and velocity are easily able to overcome the decrease in the induc-

tion time with increasing Mach number and both the power and the energy

increase. This occurs because the rate of decrease of the iaduction time

with temperature is small for high temperatures (i.e., high Mach numbers)

according to Eq. (6).

The power-energy curve obtained using data from the spark ignition

experiments 6 of Knysrautas and Lee has also been included in Figure I as

curve D. The data for :urve D is the same as that used by Abouseif and

Toong 9 for their Figure [i', and waE originally prsented in Figure [43 of

Knystautas and Lee 6  Curve D exhiits the same ziitat~vo trends as those

of the theoretical curves discussed above. Howeve", we bserve -hat the

values of the mirimum power and tne minimum energv fr.on the -Vur yves are



very different from each other. The differences in the values of these

parameters from the three "theoretical" curves (A,B, and C) indicate that the

experimental uncertainties in the values of the induction times used have a

significant effect on the value of the minimum power and the minimum energy.

The minimum power varies from about 0.3 MW/cm to about I MW/cm and the

minimum energy varies from about 0.012 J/cm to about 0.1 J/cm. The

experimentally determined minimum power (from curve D) is about 0.13 MW/cm,

which is lower than the calculated values, and the minimum energy is about

0.1 J/cm, which is at the top of the range of calculated values.

The quantitative differences between the experimental and theoretical

values could be due to a variety of factors, a few of which we now discuss.

As observed from curves A, B, and C, uncertainties in the induction time data

can have a significant effect on the values of the minimum power and the

minimum energy. Expressions such as Eq. (6) for the induction time are

obtained by fitting to a limited range of experimental data. However, here

we have used Eq. (6) for a range of temperatures and pressures far greater

than that over which it was determined. The Mach numbers and the

corresponding temperatures and pressures at the shock and the piston surface,

along with the induction time used for obtaining curve B, are given in

Table I. We see that for Mach numbers greater than about 14, the

temperatures and pressures are so 'iigh that the entrapolated induction time

is of questiconable validit,. However, for obtaining the theoretical resulLs,

we had assumed a constant value of 1.2 for Y, the ratio of specific heats.

We see from Table I that for high Mach numbers, the , of the shocked gas

could be very different from that ahead of the shock wave because of tie

large temperature differences. Using an incorrect value for Y could also
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TABLE I

Parameters at the Piston Surface for Shocks of Different Strengths

M Ps T (W pp (atm) Tp(K) Tp( wmec)

4.0 2.285 769.5 2.378 774.6 1485.3

5.0 3.577 1037.9 3.701 1043.8 73.823

6.0 5.156 1365.4 5.320 1372.6 9.4207

7.0 7.023 1752.4 7.232 1761.0 2.2381

8.0 9.176 2198.8 9.439 2209.2 0.8003

9.0 11.616 2704.6 11.939 2717.0 0.37639

10.0 14.344 3270.0 14.736 3284.7 0.21357

12.0 20.661 4579.2 21.209 4599.2 0.098452

14.0 28.126 6126.3 28.859 6152.6 0.060420

16.0 36.740 7911.5 37.685 7945.0 0.043616

18.0 46.502 9934.6 47.687 9976.4 0.034733

20.0 57.413 12195.8 58.870 12246.8 0.029447

Note: A constant Y of 1.2 has been assumed for obtaining the above results.
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explain some of the quantitative differences between the experimental and

theoretical results.

B. Effect of Y on Power-Energy Relations

We have repeated the power-energy calculations using different but

constant values for Y on both sides of the shock wave and the results are

shown in Figure 2. We observe that Y does indeed have a significant effect

on the minimum power and the mini-um energy. When Y is changed from 1.1 to

1.4, the minimum source power decreases from 2.0 MW/cm to 0.18 MW/cm and the

minimum energy decreases from 0.065 to about 0.02 J/cm. The Mach number at

which the shock must travel to attain the minimum power is also very

different, as seen in Figure 3 where the average source power is shown as a

function of Mach number for three values of Y. Changing y from 1.4 to 1.1

doubles the Mach number corresponding to the minimum power from 8 to 16. The

effect of Y on the power-energy relation arises partly from the factor

(Y/Y-1) in Eqs. (3) and (4) and partly from the fact that the temperature

behind a shock of given Mach number is very different for different Y's.

The effect of the factor (Y/Y-l) is to change quantitatively the values

of the source power and the source energy corresponding to the shock of a

given Mach number and is the same for all Mach numbers. The changes in the

temperature behind a shock wave due to assumed differences in Y is, however,

a function of the shock Mach number. Let us consider a shock wave of the

Mach number 10. In Table It we have given the pressure ratio, the

temperature ratio and the temperatures across this shock wave for different

values of Y. We have also included the case where Y is different across the

shock wave as case 3. For obtaining case 3, Eqs. (C7-C13) from Appendix C
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*

TABLE It

Effect of the Ratio of Specific Heats

CASE pO s Ps/po Ts/To To TS

1 1.2 1.2 109.000 10.900 300 3270.0

2 1.3 1.3 112.913 15.710 300 4712.89

3 1.3 1.2 118.426 11.454 300 3436.26

Note: The conditions ahead of the shock wave are denoted by "o" and those
behind by "s".

I
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Figure 2. Effect of Y on the power-energy relations for the initiation of

cylindrical detonations in an acetylene-oxygen-nitrogen mixture.
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Figure 3. The average source power as a function of the shock Mach number

* for constant Y's across the shock wave.
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were used. We see that the temperature behind the shock wave is

significantly lower than that for case 2. Case 3 is a more realistic case

than case 2, since Y is generally lower behind the shock. However, the

appropriate Y for conditions behind the shock wave is different for different

Mach numbers, since the temperatures are different. Thus a better approach

is first to guess a Y for each Mach number and use it to calculate the

temperature behind the shock. This new temperature implies a new y, as

discussed in Appendix C. Using this new Y in the modified shock relations

(Eqs. (C7-C13)), we get a new temperature. This iterative procedure can be

continued till convergence is achieved.

The power-energy calculations were repeated using the correct value for

Y, that is, for each Mach number including the effect of temperature on Y.

In Figures 4 and 5, the average source power and the source energy have been

shown as functions of the Mach number for three different conditions (A, B,

and C). Curves A and C were obtained assuming Y constant and have already

been discussed. Curve B is obtained using the variable Y. For low Mach

numbers, curve B lies close to curve A and for very high Mach numbers it

tends towards curve C. This is not surprising since for the acetylene-

oxygen-nitrogen mixture being studied here, y varies from 1.31 to 1.16 when

the Mach number changes from 2 to 24. From curve B in Figures 4 and 5 we

also note that the minimum power and the minimum energy conditions occur at

Mach number of 10.0 and 15.5 respectively. The power-energy curve obtained

with the variable Y is shown as curve B in Figure 6 where we have also shown

three other curves obtained assuming constant Y. We note that curve B lies

predominantly between the curves with Y of 1.1 and 1.3 and is very similar to

the curve with Y of 1.2.
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shock wave. Curve B was obtained assuming y to be variable as

explained in the text.
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Figure 6. Effect of variable Y on the power-energy relations for the

initiation of cylindrical detonations in an acetylene-oxygen-

nitrogen mixture.
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From the above discussion it is clear that the effect of using the

correct Y is mainly to alter the Mach number corresponding to the minimum

power and the minimum energy condition. However, the calculated values of

the minimum power and the minimum energy are still different from those

obtained experimentally. Therefore we examine another possible reason for

the differences between the experimental and the theoretical values: the

uncertainty in the appropriate time to be used for t in Eqs. (3) and (5).
cr

C. Critical Time for Energy Deposition

As a first approximation, we assume that energy must be deposited until

ignition occurs at some point in the flow field between the shock and the

piston surface. Since, in general, the temperature and pressure is highest

at the piston surface, we used the chemical induction time corresponding to

these conditions as the appropriate time for energy deposition. However,

when there is fluid motion, ignition can occur before the time corresponding

to the constant volume, homogeneous chemical induction time. For example,

for a certain range of temperatures and pressures, oxy-hydrogen mixtures with

small perturbations could have significantly reduced ignition times. The

specific effect of this phenomenon on the power-energy relations will be

reported in a subsequent paper. In gas mixtures which are not particularly

sensitive to perturbations, the shortest induction time in the shocked region

seems to be the necessary condition for the initiation of detonations.

However, we need to consider whether this is a sufficient condition also.

Shock tube simulations 1 have indicated that the time at which a

detonation wave is first observed is only very slightly longer than the time

at which ignition first occurs. That is, the time between ignition and the
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formation of a detonation wave is small when compared to the induction time.

This is not surprising when we consider the fact that for many reactive

systems, the reaction time is very small compared to the induction time. The

results of Abouseif and Toong on the initiation of planar detonations 9 also

supports this observation. However we have not studied the effect of

geometry on the time between ignition and detonation. It could very well be

that due to the volume change in spherical and cylindrical geometries, this

time is significant when compared to the induction time. This needs to be

studied before one can confidently use the induction time as th& )ropriate

time for tcr.

We have compared the results from the theoretical model f "-e case of

cylindrical detonations with the experimental results of Knystau,as and Lee
6

because in both cases the amount of energy deposited was proportional to the

second power of the time. However, it is important to note that in the

theoretical model we have considered only constant velocity shock waves and

it was this that made it possible to assign a single induction time to each

shock wave. If the velocity of the shock wave is not constant, it is not

possible to assign a single induction time to it since the flow field behind

the shock wave would be time-dependent. Thus, shock waves of different time

histories can deposit the same amount of energy but at different average

source powers. This could be an imporant factor in the quantative

differences between the experimental and theoretical values.

D. Initiation of Planar Detonations

The derived power-energy relation for the initiation of planar detona-

tions in the same oxy-acetylene mixture is shown in Figure 7. In this
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Figure 7. Power-energy relations for the initiation of planar detonations.

The x's are data obtained from shock tube experiments [7].
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figure, we also show the shock tube data of Dabora 7 on the direct initiation

of detonations in a stoichiometric hydrogen-air mixture. The point to notice

is chat both curves exhibit the same qualitative behavior. Unlike the

cylindrical case, each value of the power corresponds to an unique value of

energy. The direction of increasing shock strength (as determined by the

Mach number) is also shown in Figure 7. In the planar case, we see that as

the Mach number decreases the power always decreases. As noted earlier in

the cylindrical case, as the Mach number decreases, the power decreases only

up to the minimum power. Then the power increases with a decrease in the

Mach number of the shock wave. Therefore, the qualitative difference in the

experimental data of Knystautas and Lee (shown in Figure 1) and Dabora (shown

in Figure 7) are due to the difference in the geometry of the two

experiments.

We also observe in Figure 7 that as the Mach number decreases, we need

more and more energy to initiate a detonation. The trend of the curves

indicates that there is a minimum Mach number below which a detonation will

not occur (i.e., would require an infinite amount of energyl. The value of

the power corresponding to this minimum Mach number is the minimum power.

This agrees with the observation made by Knystautas and Lee 6 that the

requirement for a minimum value of the source power indicates that the source

must be capable of generating a shock wave of a certain minimum Mach number.

However, we observe from Figure 1 (see also Figures 3 and 5) that for the

case of cylindrical detonations, the minimum power does not correspond to the

shock wave of minimum Mach number. In the cylindrical case, it is possible

to initiate a detonation with a shock wave of lower Mach number than that

corresponding to the minimum power. Such a shock will have to be maintained
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for a longer time than the shock corre,.ponding to the minimum power and hence

will require a larger amount of energy.

E. Initiation of Spherical Detonations

The power-energy curve for the initiation of spherical detonations is

similar to the curve for the cylindrical case. However, for the case of

spherical detonations, the power is

P p u3 t2 , (9)
p p

but the energy is still

E - P t. (10)

Since the power and energy are proportional to higher powers of the time, t,

uncertainties in t will have a greater effect on the value of the minimum

power and the minimum energy. Further work is being carried out currently to

study the initiation of spherical detonations in hydrogen-air mixtures and to

compare this to experimental data.
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IV. SUMMARY AND CONCLUSIONS

In this paper we have used a theoretical model to determine the relation

between the power and the energy required for the initiation of planar,

cylindrical and spherical detonations in a gas mixture. The results

discussed above show that though the simple theoretical model has significant

limitations, it can still be used to explain the qualitative differences in

the power-energy relations obtained from different experimental arrangements.

Another result from the model is that the minimum power requirement

corresponds to a shock of minimum Mach number only in the case of planar

detonations.

The results from the model on the initiation of cylindrical detonations

in an acetylene-oxygen-nitrogen mixture qualitatively agree with experimental

data. Some of the reasons for the quantitative differences have been

examined. One of the important parameters in the model is the time required

for deposition of the critical energy required for the initiation of

detonations. This time is related to the induction time and the results

presented above show that uncertainties in the induction time data used can

have a significant effect on the power-energy relations. The results also

indicate that further work needs to be done to determine the effect of the

geometry on the time for critical energy deposition.

The quantitative differences between the experimental and theoretical

results may also arise because of the model assumption that the velocity of

the shock wave is constant. This may not be so in the experiments.

Furthermore, the model considers only the minimum power and energy required

to initiate a detonation wave. We have not examined whether this would

result in a self-sustained, propagating detonation wave. Detonation
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propagation is characterized by complicated interactions among incident shock

waves, transverse waves and Mach stems which form detonation cells. These

must be described by multidimensional theories and simulations. The results

from such studies need to be considered to extend the work presented here to

the study of self-sustained detonation waves.

One application of the model presented here is to determine the relative

tendency of different explosives to detonate, since the limitations of the

model would then be less critical. This would be particularly useful for

studying the effect of additives on the detonability of condensed phase

explosives. Further work is being carried out to modify the model for such

applications.
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Appendix A

Source Power and Energy Required to Generate a Constant Velocity Piston

Here we derive the power and energy required by a source to generate a

constant velocity piston in planar, cylindrical and spherical geometries.

Let us first calculate the work done by a constant velocity piston moving

from time to to time t in a gas mixture. If the effects of viscosity, heat

conduction and chemical reaction are negligible during the time internal

(t-to), the pressure ahead of the constant velocity piston would also be

constant. Then the work done by the piston on the gas mixture is given by

w Vpp dv - p (v - v) (Al)
v p p o

0

where vo and v are the volumes at time to and t, repectively. The volume

change (v - v ) depends on the geometry of the system. In planar geometry,

the volume swept out by the piston is

v - v A(r-r) , (A)

where ro is the position of the piston at time to and A is the cross

sectional area of the planar piston. In cylindrical geometry,

v - v (I r 2 - I r 2) , (A3)
o0

where L is the characteristic linear dimension of the system and in a

spherical geometry,

v = -, rV a 4 3o (A4)
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The position of the constant velocity piston at time t is given by

r a r + u (t -t) , (AS)

where up is the velocity of the piston. Without loss of generality we can

assume that ro a 0 at time to 0 0. Using Eq. (A5) in Eqs. (A2), (A3) and

(A4), we have

Ba a a
v-v -u t , (A6)0 CL p

where Ba M A, 211, and 4W for awl, 2, and 3 corresponding to the planar,

cylindrical and spherical geometries respectively.

Substituting Eq. (A6) into Eq. (Al) we have

B
Ba a aL

Defining

wp for a' al

for aL - 2 and (AS)

w for au 3

we have

a 1 aVp *- p Up t .(A9)

p a 'pp

It is important to note that the above expression for wp gives the work

done by the piston, per unit area in planar geometry and per unit length in

cylindrical geometry.
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In order to obtain the above amount of work w., we will need a source

which can generate and maintain such a constant velocity piston. It has been

shown that a pressure and velocity field identical to that ahead of such a

piston can be generated by appropriate heat addition. In order to

demonstrate this, consider heat addition to a closed system of arbitrary

volume vO. For such a system with no heat losses to the surroundings, the

first law of thermodynamics states that the change in the internal energy of

the system is

dEint dq + dw (AO)

where dq is the amount of heat energy deposited and dw is-the work done by

the system. Let us assume that heat energy is added to the system to take it

from the volume vo to the volume v at a constant pressure, p. Then, the

change in the internal energy of the system (assuming a mixture of perfect

gases) is given by

pv pv° p

dE. - - - - - -vv) Al
int - r- I (V-Vo) (All)

The work done by the system in going from vo to v at the constant pressure

p i

dv ajVpdv =-p (v-v) . (A12)
V

0

Substituting Eqs. (All) and (A12) in Eq. (A10), we find that the amount of

heat energy which has to be deposited to create the required change in the

system is

E = - (V'V0 ) + P (V o)
*dep y- 0

-f/ p (v-,o
Y-1 0
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(Al3)

Substituting Eq. (A9) in Eq. (A13) we have the source energy required to

create a constant velocity piston in the three geometries,

y a a a

(t) p U + t (A4)
5 y-l ap p

The power, or the rare at which energy is deposited, is given by

P (t) dEs i
dt t

C ta-I (A15)
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Appendix B

Flow Field between the Piston Surface and Shock Wave

In the planar case, the pressure and fluid velocity at the piston

surface are the same as those just behind the shock. However, in the

cylindrical and spherical cases, the flow field between the shock and the

piston surface is nonuniform but can be obtained by solving the following

equations. For a one-dimensional flow, the equations for the conservation of

mass can be written as:

0+ u + P [ a + (a-i) 0'* (Bi)

and for conservation of momentum as:

+ u2)

where a 1 1, 2, and 3 for planar, cylindrical and spherical coordinates

respectively. Since we are primarily concerned with the flow field before

any significant reactions occur, we can assume the flow is isentropic if

diffusive transport effects are negligible. For a perfect gas, the energy

equation then becomes

d !E (B3)
*dp P

We can obtain the flow field between the piston surface and the shock wave by

solving the above system of partial differential equations with appropriate

boundary conditions. However, the solution procedure is considerably
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simplified if we seek a similarity solution. Then the system of partial

differential equations can be reduced to a system of coupled ordinary

differential equations:

(u-L) dp _ du+ (1) u+ dL + 01 1) 0 (B4)

P dL dL L

(u-L) du _ _ _ (B5)
dL P dL

dL P dL

In the above system of equations, the density P, the velocity u and the

pressure p are all functions of the similarity variable L, which is equal to

the radial location r divided by the time t. For a spherical geometry

(a'3), Eqs. (34) - (B6) reduce to those formulated by Taylor1 0 . These

equations can be further reduced to a set of two equations in the dependent

variables u and a, the sound speed, which is a function of p and P. For a

mixture of perfect gases, using

a2i= J2 (B7)

and appropriately combining Eqs. (B4) - (B6) we have:

da2  - -l u-L) du(
dL - L dL

and

du - (-l) u - ( 2L) (B9)
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The boundary conditions for obtaining the flow field between the shock wave

and the piston surface are: just ahead of the piston surface

r
L M .u (BIO)
p t p

and just behind the shock,

r

L (-Li)
a t u

Yp
a 2 (B12)s p

5

and

u u (B13)

Normal shock relations can be used to estimate Us, 0s and ps for a

4 shock of known velocity, Su.

Taylor solved the equivalent of Eqs. (B8) and (B9) in spherical co-

ordinates to obtain the properties of the airwave surrounding an expanding

I sphere 0 . He first assumed a piston Mach number and then numerically

integrated the equations from the piston surface to different locations

ahead of it. He then solved the normal shock relations for various shock

I strengths. When he plotted these two solutions, he found that there was a

location in the flow field ahead of the piston which had the same physical

conditions (velocity and sound speed) as that behind a shock wave of a

I particular Mach number. Therefore, he could uniquely relate the flow field
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ahead of a piston of given Mach number to that behind a particular shock

wave. The existence of such a unique solution implies that a constant

velocity piston will produce a constant velocity shock wave (in a spherical

geometry). Since we find that such solutions exist in cylindrical geometries

too, we can say that a constant velocity piston will produce a constant

velocity shock wave in planar, cylindrical and spherical geometries provided

we have a similarity solution.

We have adopted a different approach to solve Eqs. (B8) and (B9). For

a shock of given Mach number, we determine the flow conditions behind it

using the normal shock relations given in Appendix C. Knowing as and us,

Eqs. (B8) and (B9) can be numerically integrated from L. to the piston

location LP to give up and a2  However we do not know Lp a priori.

So we have to solve the equations until we find a Lp which is equal to up

(See Eq. (Bl0)]. Therefore it is more convenient to rewrite Eqs. (B8) and

(B9) in terms of a new dependent variable u/L. Then, we can solve the

equations from us/L s to I.

Transforming Eqs. (B8) and (B9) to the new dependent variable 9, where

11 (B14)

L

and defining

(B15)

and

z - logeL, (16)

we have

E-42



) n" ( 1 1)( [-) I)( (B17)

and

dz :I B 8-dF, F, [ r- (I-F,)'] (BIB)

Eqs. (BI7) and (B18) are solved along with the boundary conditions given

below. Just behind the shock, that is, at

u
F, L (B19)s S

u

z log e (Su) (B20)

and

a 2

n (B21)
U

Just ahead of the piston surface,

u

p L (B22)p

From the solution of Eqs. (B17) and (B18), we get zp and r. Using these

quantities in the equations given below we calculate up and ap,
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u = exp (Z ) (B23)
P P

a 2 = u 2  (324)
pp p

In addition to up (from Eq. (B23)) we also need the pressure at the piston

surface which we can get using Eq. (B24) in the following equation,

2Y
a y-l

S (a- ) (B25)

To complete the solution procedure we still need the fluid velocity, the

pressure and the sound speed just behind the shock wave for (Eqs. (19),

(B21) and (B25)). Since we are restricting our attention in this paper to

one dimensional flows, we can use normal shock relations to obtain these

quantities. The normal shock relations, assuming that Y (the ratio of

specific heats) can vary across the shock wave, have been derived in

Appendix C.
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Appendix C

Flow Conditions across the Shock Wave

Since we are considering only a one-dimensional flow, the flow across

the shock wave along any streamline in the three geometries can be obtained

from normal shock relations 1 5. However, we note that it is important to use

the appropriate values for y, the ratio of specific heats, in the shocked

region. Since the normal shock relations are usually obtained assuming Y

constant across the shock wave, below we give a brief derivation of the

normal shock relations with variable y.

For an adiabatic, constant area, one-dimensional flow with a normal

shock, the equations of continuity, momentum and energy are1 5.

Pov ° = -Pv s  (Cl)

p + PoVo 2 .p + P V 2  (C2)

S2 1 v 2  (C4)h0 + vo 9 hs 2 8 (4

where the subscript "o" refers to the conditions ahead of the shock wave and

the subscript "s" refers to conditions behind the shock wave. We also need

an additional constitutive relation to complete the system of equations

since there are four unknowns. For a mixture of perfect gases, the caloric

equation of state can be written as
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h f(p, P)

29 Y=. == . h (C4)
y- 1 p ref "

Assuming that the gas mixture is perfect on each side of the shock wave but

with different values of Y, we have:

h Y (0)

Yo- I P0

and

Y P
h =s s (C6)s Ys- I P s

Eliminating v. from Eqs. (CI) and (C2), we have:

P 0 PO + oV 2 (1 - R) (C7)

where

P
R - - - (c8)P

s

From Eq. (CO) we also have the fluid velocity behind the shock (in the

laboratory coordinate system),

u M v - v a v (1 - R) (C9)

The speed of sound behind the shock is
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y s s 1 / 2

s 0
s

Given the initial conditions (Po, POD Vo) ahead of the shock, we can

obtain the required parameters Ps, Us and as from Eqs. (C7), (C9) and

(CIo) if we know the parameter R.

By appropriately combining Eqs. (Cl) - (C4) we have obtained the

following quadratic equation for R:

R 2(0 + -y R(U + Cj) 2Ys + (Y C2 + i)(y - 1) - 0 (C1i)

where

PO 2C i

C" -- and C2 " (C12)
P v Cy -1)
0 0 0

From Eq. (Cl), we have

Ys (I + Cl) + (Ys 2 + Cl) 2 -(1 + y )1(s-1)(yOC2+ M)1/2

R-( * ) (C13)

The importance of using a variable y for obtaining power-energy relations

has been discussed in detail in the main text.

Effect of Temperature on the Ratio of Specific Heats

In order to use the above formulation we need to know the ratio of

specific heats both ahead of the shock (Yo) as well as that behind it

(y.). In general, these two y's are different because of differences in

the temperature and the mixture composition. For our particular problem
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the mixture composition may be assumed to be frozen across the shock wave

since we are primarily interested in the mixtures up to the time when

ignition occurs. In this case the specific heat at constant pressure for

the mixture can be written as
1 6

m
C E a n. (C°). (C14)

P j-I p P

where n. is in units of the Kg moles of species j per Kg of mixture and
0

(CO). is the standard state constant pressure specific heat for species j in
p3

J/(Kg mole)(K).

For each species, the specific heat at constant pressure has been given

in the form of least square coefficients in Ref. 16 as follows:

(c 0).
PI alj + aZT + a 3 jT 2 + a~jT 3 + asjT4 (C15)

where R is the universal gas constant and is equal to 8314.3 J/(Kg mole)(K).

Assuming the mixture behaves like a perfect gas, we can write the ratio of

specific heats, Y, as:

C
C - R (c16)

P

or to use the data in Ref. 16 more directly,

C /Rp (CM7
- C /R - I

p
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